
the single curve I, while that for OT-4-1 is shown as curve 2 and that for VT-20 as curve 3), 
which indicates that the curves in these coordinates are invariant under change in the target 
thickness and projectile diameter throughout the speed range, not merely when a certain speed 
is attained. 

Analogous plotting in the new coordinates was also used for the phenomenological Av(v+) 
curves; the resulting Av/v,(v+/v,) curves are shown in Fig. 4. The data form pronounced 
bundles for each material, which tend to asymptotes (i for VT-20, 2 for OT-4-1, and 3 for 
DI6T). 

We are indebted to S. T. Mileiko and O. A. Sarkisyan, the authors of [I], who stimulated 
the present study. 
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EFFECTS OF STRAIN HISTORY ON THE DAMAGE ACCUMULATION 

RATE IN NONMONOTONE ELASTOPLASTIC LOADING 

A. A. Movchan UDC 539.4 

i. The determination of the failure instant under conditions of nonmonotone elastoplastic 
loading may involve determining the number of cycles to failure in few-cycle fatigue [i, 2] 
and determining the plasticity reserve in complicated technological operations in pressure 
working of metals [3] as contrasting particular cases. Here we describe the accumulation of 
distributed damage, not the localized damage occurring after the formation of macroscopic 
cracks. Therefore, by the term failure we mean the generation of a crack of a certain fixed 
but small length. Although the superficial pictures of fatigue failure (few-cycle failure) 
and quasistatic failure are different [2], there are close similarities in the dislocation 
substructures, which define the damaged state of the material at the stage where delocalized 
damage accumulates [4], which indicates that a unified description may be possible. We 
assume that the ranges in strain rate and temperature are such that the choice of time scale 
is unimportant. 

One way of providing a phenomenological description of damage accumulation is to intro- 
duce objects of scalar or tensor nature that describe the damage state. These objects are 
either specified as functionals of the loading path [5] or else their variations are defined 
by kinetic equations [6-8]. In [7, 8], the kinetic equation for the damage parameter ~ was 
written as 

dQIaL = Ze, (i. I) 
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where L is the length of the plastic-strain arc, P is the residual micros tres~ intensity 

[9], and % is a constant. 

In [7, i0, ii], it was taken as "... a rational first approximation" [i0] that P has a 
finite relation to the intensity of the plastic strain Pi = (2/3)(PijPij)~/2, where Pij is 
the plastic-strain tensor. Then (i.i) becomes 

dQtdL = I ( P i ) .  (i. 2) 

From (1.2) one can describe few-cycle fatigue with strictly proportional strain in the 
half-cycles having a symmetrical cycle (zero mean strain) and for nonmonotone deformation 
with progressive increase in the plastic-strain intensity [7]. In [12, 13] it was shown 
that according to the criterion of (1.2) the damage in nonproportional cyclic strain is 
always greater than in cyclic strain of the same amplitude having proportional changes in 
the plastic-strain tensor components in the half-cycles, which has been confirmed by experi- 
ment [14]. In [15, 16], equations for few-cycles fatigue were derived that gave a quali- 
tatively correct description of the experimental data for the superposition of strains orthog- 
onal in space [17] on the harmonic plastic-strain paths superimposed with a phase shift or 
with different frequencies. It should be noted that in all the above cases where (1.2) 
describes the experimental data correctly, the means for the plastic-strain tensor components 
over a cycle were either constant and equal to zero or increased from cycle to cycle. 

However, the applicability of (1.2) is restricted, since it does not incorporate the 
effects of the strain history on the damage accumulation rate. In [18] it was shown that the 
experimental data on few-cycle fatigue conflict with the assumption that the damage accumu- 
lated in a certain part of the strain path is independent of the history of the strain for 
any given damage summation law. This means that (1.2) will lead to a conflict for any func- 
tion f. In fact, according to (1.2) the damage summation law is linear (i.e., is fixed); on 
integrating (1.2) over any part of the strain path, we get that the damage increment is 
dependent only on that part and is independent of the previous strain. In accordance with 
this, it was shown in [19] that (1.2) substantially overstates the effects of cycle asymmetry 
on the working life in few-cycle fatigue when the mean value of the strain parameter over a 
cycle is constant and different from zero, as it incorrectly describes the effects not 
only quantitatively but also qualitatively. 

2. Here we incorporate the effects of strain history on the damage accumulation rate. 
Here (1.2) can be put as 

d"7 = 1 p (P, o ) ,  
(2.1) 

where p(P, O) is the distance in strain space between the point 0 corresponding to the un- 
deformed state and the point P representing the instantaneous strained one. Therefore, the 
distance in (2.1) is reckoned from the origin, and thus the asymmetry with respect to 0 has 
too large an effect on the working life. To avoid this, (2.1) may be rewritten as 

df~ "~" "ag= l[ V~P(P, Po)], (2.2) 

where Po is a certain distance reference point. During rigid cyclic strain, P moves twice 
over a certain rectilinear segment in strain space in each cycle, and then Po should approxi- 
mate to the center of this segment. Then the effects of the asymmetry on the working life 
will decrease as the working life increases, as is observed in experiments [20]. This condi- 
tion is satisfied by the center of mass PI on the strain path if the latter is considered as 
a constant-density curve in strain space. However, if Po and PI coincide, the effects of 
the asymmetry on the working life will be the same for different materials and will even be 
too small. Therefore, in what follows we assume that Po only ~approaches PI during the strain. 
The coordinates o o e..~j of Po and e~.12 of PI are considered as related by eij = ~(L)e j, where 

~(L) + 1 for L + ~. In the subsequent calculations, ~(L) is taken in the form ~(L) = L/(L + 
L,),where L, is a certain constant. Then 

L 
' e~j I [ (2.3) 

--  L + L ,  o P O  (~)d~" 
0 
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According to (2.3), e?. =!el. for L, = 0; the rate at which Po approaches PI decreases as 
L, increases, and e~j~ 0 fo~ L, = =. 

In [19] it was shown that the phenomenon of allocyclic fatigue is described within the 
framework of (1.2) by the Coffin-Manson power law where f is a power law itself. Therefore, 
in that follows we take 

l(z) = ~x n. (2.4) 

AS a result, the scalar parameter ~ and the tensor parameter Pij describing the damage 
state are expressed by the following functionals: 

L L 

0 0 

or in differential form by 

- ~----- n Pij 
dQ= ~ ( r "~POPi,) dL, do,,=dPij-- ~ d L .  

(2.6) 

The %, n, L. of (2.5) and (2.6) are functions of the form of the state of stress and 
strain. System ~2.6) is equivalent to (1.2) with (2.4) for L, = ~. 

3. If there is proportional nonmonotone change in the plastic-strain tensor components 

o 
where Pij 

then (2.5) 

p~j = ~p~, ( 3 . 1 )  

is a constant deviator and p in general is a nonmonotonically varying parameter, 

can be reduced to 

f l  = 

L p L , - t -  s i g n  ~-~ ~d~ 

y ~' l -~- L, dl. 
0 

(3.2) 

We apply (3.2) to the case of monotone strain and write the faflure condition as 

= t, (3.3) 

to get a relationship between the model parameters %, n, and L,, which contains the plas- 
ticity D of the material (the intensity of the plastic strain at the instant of failure in 
monotone strain): 

1 

On+l ~ [2(~+V) J 
0 

where y = L,/D. 

During cyclic strain, the distance reference point Po will move around a certain immo- 
bile point: the center of mass for the strain path for a cycle P2 such that 0(Po, P2) 
C/(Ai + B), where P(Po, P=) is the maximum distance between P+ and P2 during a cycle, while 
A, B, and C are constants for a given cyclic strain path, with i the cyclic number. If the 
number of cycles is fairly large, the distance in (2.2) will be reckoned from a point Po 
close to the immobile point P2, and the mode of damage accumulation comes close to 
stationary (the changes in the damage accumulation from cycle to cycle are small and de- 
crease as the number of cycles increases). According to (2.2), the few-cycle fatigue equa- 
tion for the stationary state of damage accumulation takes the form 

where 

L1 

o 

0 

(3.5) 

are the coordinates of point P2; the integration is taken along the strain 
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arc during one cycle. Calculations show that NI/N2 tends to one in cyclic strain if the 
diameter of the path is reduced in a cycle, where N~ and N2 are the numbers of cycles to 
failure found correspondingly from (2.5), (3.3) and (3.5). 

On comparing (1.2) with a power function f and (3.5) we conclude that (1.2) will give 
the same results as (3.5) under conditions of stationary damage accumulation, which means 

that it will give results similar to those obtained from (2.5), provided that e~j = 0, i.e., 

when the components Pij averaged over a cycle are zero. If this is not so, (1.2) will give 
results close to those from solving (2.5) for a sufficiently large number of cycles if by 
Pi we understand the intensity of the tensor Pij -- e~j. Geometrically, this is equivalent 

to transferring the origin in strain space to the center of mass on the strain path for a 
cycle. With these reservations, the above results [7, 10-13, 15, 16] obtained from (1.2) 
are approximately correct within the framework of (2.5) if the number of loading cycles is 
sufficiently large. 

In rigid cyclic strain, p in (3.1) varies cyclically between given limits of pl and 
p2 (p2 > p~), and under conditions of stationary damage accumulation we get from (3.5) an 
equation for few-cycle fatigue in the form 

( . + !  ~ II(-+I) ! (3.6) 
6 = 2 ~  4~ ] Nll(n+1) ' 

where ~ = p2 -- P~ is the scale of the plastic strain and N is the number of cycles to failure. 
Equation (3.6) has the same structure as the Coffin-Manson power-law equation for few- 
cycle fatigue, which has been repeatedly tested by experiment [i, 2]. If the latter is 
taken in the form 

a = p, IN ~, ( 3 . 7 )  

we get the following relationship between the model functions and the cyclic viscosity p, 
and the parameter e in the few-cycle fatigue curve, which are readily determined by experiment: 

41(,, + I) = =; (3.8) 

21(4~'a)~ = P*" (3.9) 

We substitute (3.4) into (3.9) to get 

I- 

2 v (3.10) 

Equations (3.8)-(3.10) solve the problem of deriving the model parameters in terms of the 
experimentally determined quantities D, ~, and p,. Here L, is found graphically from (3.10), 
where the left side is the monotone function y = Le/D. 

Equation (3.10) shows that p,/D is an increasing function of L, and n. For n = const, 

p,/D increases from 2 -~ to 2 I-2~ as L, increases from zero to infinity. With L, = ~ and 

= 0.5 we get from (3.10) that 

p. =D. (3.11) 

Equation (3.11) was derived from (1.2) in [7] and was recommended on the basis of the experi- 
mental data of [i]. With L, = 0 and ~ = 0.5, from (3.10) we get 

p. = D/'I/~. (3.12) 

Equation (3.12) was derived from other considerations in [21], where results are given 
derived from experimental data for various materials, which confirm (3.12). 

In [2], it was recommended that one should use p, = D/2 for few-cycle fatigue in struc- 
tural components, which corresponds to n = 0 and which gives the minimal value of p,/D for 
L, ~ O, n ~ 0. 

Therefore, (2.5) has an advantage over (1.2) that the ratio of the cyclic viscosity p, 
to the ordinary viscosity D is not constant but may vary from material to material, as is 
observed by experiment. 
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4. Equation (3.6) applies if the number of cycles is snfficiently large. If this is 
not so, then on integrating (2.2) we have to allow for the motion of P~ during the strain. 
According to (2.5) and (3.3), the equation for few-cycle fatigue with rigid strain can he 
written as 

6 = ( p , m  =) (~ - p). (4. i) 

Here p, and ~ are defined by (3.8) and (3.9); the function B reflects the effects of the 
nonstationary damage accumulation and is as follows for n = i: 

i "11/2 
�9 " p = l - - [ i - - ( p , / p , ) ' x ( L , / p = ) - - ~ ,  S J  , 

w h e r e l ~ ( z )  = 0 . 5  + z - -  z = l n ( 1  + 1 ] . z )  a n d  

h'--1 - ( ,) ,N 
S =  ~ (--l)m-lLmLm-1(l--x.) In 1-1"~'m~ - { - , ~  LmLra+, Iu,,t -]- (t -- xm) ]n ( l  __ x,a)l, 

W;=:I 

( -  ~)" [L. (p~ + p~) t- P~P,] 
L m = L ,  ~ P2 + (ra - -  i) 8, ~m = LraLm+ 1 ' 

where k* is the least odd number exceeding (p~ + 2L,pl)/~ 2 -- i. Then ~ (n, N, 6, 
L,, p2) is determined by numerical integration for n # i. For Pz/P= = const and ~ + 0 
we get B § 0. 
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Equation (4.1) differs from the few-cycle fatigue equation derived for unsymmetrical 
rigid strain from (1.2) in giving a qualitatively correct reflection of the effects of the 
asymmetry on the working life. According to (4.1), the ratio of the working life in 
unsymmetrical strain (R = pi/p2 = const # --i) to that in syn~etrical strain (R = --i) with 
the same scale ~ tends to one as ~ increases (increase in the working life). Also, within 
the framework of the model of (2.5) it is possible to regulate the effects of the asymmetry 
on the working life by means of L,; the larger L,, the greater the reduction in the working 
life because of the asymmetry under otherwise equal conditions. This is illustrated in 
Figs. 1 and 2, which give few-cycle fatigue curves derived from (4.1) for Lm/D = 0.5 (Fig. i) 
and L,/D = 1 (Fig. 2). Curve 1 corresponds to R = --i, curve 2 to R = 0.5, and curve 3 to 
R = 0.75. Figures 1 and 2 also show the experimental results of [20] for steel A302 and 
5454-0 aluminum alloy correspondingly; the open points correspond to R = --i, the crosses to 
R = 0.5, and the filled points to R = 0.75. One concludes from Figs. 1 and 2 that L, ~ 0.5D 
for A302 steel, while L, ~ D for 5454-0 alloy. 

5. Let the material be brought to the point of failure by monotone strain after a cer- 
tain strain path terminating at point 0 in strain space (this corresponds to the undeformed 
state). At that point we consider the case where Po at the end of the preliminary strain 
path coincides with O. Under these conditions, we can derive from (2.5) and (3.3) an equa- 
tion relating the residual plasticity p+ (the length of the segment of monotone strain to 
failure) and the damage no due to the preliminary strain path: 

: t 2 ( ~ + L o / ~ + ~ )  J - 
o _ i _ ~ o .  ( 5 . 1 )  

+ 1" J L2(? +~)J a~ 
0 

According to (5.1), the residual plasticity is dependent not only on no, but also on 
the length of the preliminary strain path Lo, as it decreases as Lo increases for ~o = 
const. This in,part explains the large spread in the experimental data on the residual 
plasticity in coordinates p+ ~ (l -- ~o) [20]. For La + L, >> D, the dependence of p§ on Le 
becomes unimportant, and (5.1) becomes 

I 

P+ I ~f ~?$ +~21. ]n+--i (5.2) 
=, k =  ar / . 

O 

An equation of the form of (5.2) was derived in [ii] for the residual plasticity on the 
basis of (1.2) with k = 1 and ~ = 0.5. Within the framework of (2.5), (5.2~ gives a lower 
bound to p+ for a fixed Y and a given ~o, while (5.1) gives an upper bound for Lo = 0. The 
solid lines in Fig. 3 show curves corresponding to the upper and lower bounds to p+/D = 
for a = y = 0.5. The points represent experimental results for A302 [20]. It is evident 
that the line given by (5.2) in fact sets a lower bound to the experimental data. On the 
other hand, many of the experimental points lie above the curve corresponding to (5.1) with 
Lo = 0. Better agreement with the experimental data is obtained for lower values of ~ (see 
the dashed curves in Fig. 3, which correspond to a = 1/3). 

6. We now consider a case different that that in the previous section, namely where 
0 does not coincide with Po. The model of (2.5) then predicts the following effect: p+ on 
deformation along the straight line OPo from 0 to Po should be larger than the residual 
plasticity p- on deformation in the opposite sense. The following equations describe this 
effect for n = i, which are derived for this case from (3.2) and (3.3): 

p+ = 00 + W 0~ + 29 0 - ~) + r~, 

r 1 ---- i ( p + )  2 - -  2P+Po - -  (L o + L . ) ( L  o + L .  ~- p + ) [ .  -~ (t - -  u ) I n  (1 - -  • P -  = - -  Po -I- i--P~ ' +  29 (I - -  @o)-~ r2' 

r2 = 2- (p - )2  _~_ 200P-- __ (L 0 _~ L , )  p -  - -  [(Lo -~- L , )  - -  2001 In l -~- (6 .1 )  

D 2 I --L ~ is the distance between 0 and Po. Figure Here 9--Tq- Y L,D .In lq- ,~-- Loq_L,_{_p +, 

4 shows the dependence of the measure of this effect B = (p+--p-)/D on f~o for the case 
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L, = 0 and ~ = 0.5 calculated from (6.1) for a preliminary strain path in the form of a single 
pulsating cycle. It also shows results obtained in the torsion of circular specimens of 
diameter 3 mm and length 60 mm in the working part made of LS-59 brass (points i) or U-8 steel 
(points 2). Each experimental point has been obtained by averaging over five experiments with 
identical ~o. However, the condition p+ > p- was obeyed even for each individual experiment, 
i.e., the effect was confirmed, at least for the materials tested. Figure 4 shows that the 
no dependence of ~ is described in a qualitatively correct fashion by (2.5). We note that this 
effect does not occur within the scope of (1.2): The residual plasticity on deformation from 
the origin in strain space is not dependent on the disposition of the previous strain path. 

In [22] we find experimental data indicating that the plasticity of steel in tension after 
minor strain in compression may be greater than the initial plasticity. This effect is de- 
scribedby (1.2). Figure 5 gives graphs for the dependence of the plasticity ql on preliminary 
plastic strain q2 in the opposite sense derived from (2.5) and (3.3) (q = ql/D, t = q2/D). 
Curve i corresponds to L,/D = ~ and coincides with that obtained in [7], while curves 2-4 
correspond to L,/D = I, 0.5, and 0.001, where we also show the experimental points from [22]. 
It is evident from the graph that the model (2.5) indicates that ql may exceed D for materials 
with sufficiently large L,/D. Also, L, may effect the magnitude of the effect, in accordance 
with the experimental data. For example, even the most upwardly deviant experimental points 
from [22] correspond better to curve 2 (L,/D = i) than to curve i (L,/D = =). 

Therefore, it is possible to extend the range of experimental data that can be described 
within the framework of a kinetic criterion for damage accumulation by incorporating the 
effects of the strain history on the damage accumulation rate in the form defined by (2.5). 
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FORMULATION OF A DIAGNOSIS PROBLEM FOR A 

THERMOELASTIC MEDIUM 

V. A. Lomazov and Yu. V. Nemirovskii UDC 539.3 

By diagnosis problem we understand the determination of the characteristics of a medium 
from information obtained from a certain number of tests (test studies). Similar formulations 
are widely used in geophysics, particularly in seismic surveying. The general methods avail- 
able have been discussed in [i]. Typical applications of these formulations and methods in 
diagnosis as regards the mechanics of deformable solids are related to the identification of 
unsatisfactory items, determining wear during use, and researching the effects of external 
factors on the properties of materials. 

Here we deal with the determination of small changes in the thermoelastic characteristics 
of a material whose original properties are known. This can be interpreted as refining the 
properties of the material. In fact, when an item is manufactured, the material is subject 
to external factors arising from the production technology, which in general alter its proper- 
ties. A method is proposed for determining the new thermoelastic characteristics on the 
assumption that these remain close to those of the medium that was originally homogeneous and 
isotropic. We consider an example of using this method. 

i. The propagation of thermoelastic waves in an inhomogeneous anisotropic medium is 
described [2] by the following equations: 

Oai = (C~jhl uh,z),j -- (l~j6))d; 

c ~  - ( g ~ j o , ~ ) , j  = O, 

( 1 . 1 )  

(1.2) 

where p is density, @ is relative temperature, u ~= (ul, u2, u3) is the displacement vector, 
Bij = Cijklekl; ~kl are the thermal-expansion coefficient Cijk~ are the isothermal rigidity 

coefficients, and Kij are the thermal conductivities. All of these quantities are functions 
of the spatial variables x~=(xl, x2, x3), u ~ u(x, t), ~ = @(x, t). 

We denote by po, C;jkl' B~ coe' K~j the quantities characterizing the thermoelastic 

properties of a homogeneous isotropic medium. In that case, these quantities are constants, 

o D ~ K? and the tensors Cijkl , ij' ~j have a specific (simpler) form [2]. 

In what follows we assume that the medium is weakly inhomogeneous and weakly anisotropic, 

i.e., the quantities [p--p~ IC~--C~I, IC~j~z--C~MI, l~ij--~~ I '0 ,IK..--K~ I~ ,j have identical small orders 
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